Penerapan Data Mining untuk Memprediksi Minat Nasabah Terhadap Produk Asuransi Meninggal Dunia dengan Metode Naïve Bayes (Studi Kasus : PT. BNI Life Insurance)
DOI:
https://doi.org/10.35842/jtir.v16i2.406Abstract
INTISASI
Pendapatan untuk perusahaan asuransi ditentukan oleh jumlah premi yang dibayar oleh nasabah. faktor penting nasabah berupa premi, premi ditentukan dalam persentase atau tarif tertentu. Pada perusahaan asuransi pasti memiliki jumlah data, dan data tersebut sangat penting bagi perusahaan untuk mengetahui kriteria nasabah yang berminat pada asurnsi yang dipasarkan. Dengan adanya informasi dari data nasabah yang ada, perusahaan asuransi dapat mengambil suatu keputusan dalam menerapkan stragi perusahaan diantarnya yaitu menjual produk- produk promo untuk meninggatkan pendapatan perusahaan. Data mining merupakan suatu teknologi yang dapat membantu perusahaan dalam menemukan suatu yang sangat penting dari sekumpulan data. Data mining dapat membentu sautu pola atau membuat suatu sifat perilaku bisnisa yang berguna untuk pengambilan keputusan. Dengan menggunakan metode algoritma Naive Bayes diharapkan bisa membantu perusahaan dalam pengelolaan data nasabah dengan cara mengklasifikasi data nasabah untuk memprediksi minat nasabah dengan tingkat akurasi melebihi 80% dalam memilih produk asuransi meninggal dunia.
 Kata Kunci: asuransi, baïve bayes, prediksi, data mining.
Â
 Â
ABSTRACT
Income for insurance companies is determined by the amount of premium paid by the customer. Important factors for customers in the form of premiums, premiums are determined in certain percentages or rates. The insurance company certainly has the amount of data, and the data is very important for companies to know the criteria of customers who are interested in the insurance marketed. With the information from existing customer data, the insurance company can make a decision in implementing the company's strategy, which is to sell promo products to increase company revenue. Data mining is a technology that can help companies find a very important set of data. Data mining can form a pattern or create a nature of business behavior that is useful for decision making. By using the Naive Bayes algorithm method, it is expected to be able to assist companies in managing customer data by classifying customer data to predict customer interest with an accuracy rate exceeding 80% in choosing a death insurance product.
 Keywords: insurance, baïve bayes, predictions, data mining..