PREDIKSI KELULUSAN MAHASISWA MAGISTER TEKNIK INFORMATIKA UNIVERSITAS AMIKOM YOGYAKARTA MENGGUNAKAN METODE K-NEAREST NEIGHBOR

Authors

  • Eri Sasmita Susanto
  • Kusrini Kusrini
  • Hanif Al Fatta

DOI:

https://doi.org/10.35842/jtir.v13i2.260

Abstract

INTISARI

Penelitian ini difokuskan untuk mengetahui uji kelayakan prediksi kelulusan mahasiswa Universitas AMIKOM Yogyakarta. Dalam hal ini penulis memilih algoritma K-Nearest Neighbors (K-NN) karena K-Nearest Neighbors (K-NN) merupakan algoritma  yang bisa digunakan untuk mengolah data yang bersifat numerik dan tidak membutuhkan skema estimasi parameter perulangan yang rumit, ini berarti bisa diaplikasikan untuk dataset berukuran besar.

Input dari sistem ini adalah Data sampel berupa data mahasiswa tahun 2014-2015. pengujian pada penelitian ini menggunakn dua pengujian yaitu data testing dan data training. Kriteria yang digunakan dalam penelitian ini adalah , IP Semester 1-4, capaian SKS, Status Kelulusan. Output dari sistem ini berupa hasil prediksi kelulusan mahasiswa yang terbagi menjadi dua yaitu tepat waktu dan kelulusan tidak tepat waktu.

Hasil pengujian menunjukkan bahwa Berdasarkan penerapan k=14 dan k-fold=5 menghasilkan performa yang terbaik dalam memprediksi kelulusan mahasiswa dengan metode K-Nearest Neighbor menggunakan indeks prestasi 4 semester dengan nilai akurasi= 98,46%, precision= 99.53% dan recall =97.64%.

Kata kunci: Algoritma K-Nearest Neighbors, Prediksi Kelulusan, Data Testing, Data Training

 

ABSTRACT

This research is focused on knowing the feasibility test of students' graduation prediction of AMIKOM University Yogyakarta. In this case the authors chose the K-Nearest Neighbors (K-NN) algorithm because K-Nearest Neighbors (K-NN) is an algorithm that can be used to process data that is numerical and does not require complicated repetitive parameter estimation scheme, this means it can be applied for large datasets.

The input of this system is the sample data in the form of student data from 2014-2015. test in this research use two test that is data testing and training data. The criteria used in this study are, IP Semester 1-4, achievement of SKS, Graduation Status. The output of this system in the form of predicted results of student graduation which is divided into two that is timely and graduation is not timely.

The result of the test shows that based on the application of k = 14 and k-fold = 5, the best performance in predicting the students' graduation using K-Nearest Neighbor method uses 4 semester achievement index with accuracy value = 98,46%, precision = 99.53% and recall = 97.64%.

Keywords: K-Nearest Neighbors Algorithm, Graduation Prediction, Testing Data, Training Data

Downloads

Published

2018-07-10

Issue

Section

COMPUTER NETWORK SECURITY